Is ETL Still Relevant in 2019?

Is ETL Still Relevant in 2019?

by Joe Shara on 8/01/2019

Updated at 2/02/2023

ETL is an abbreviation for extract, transform, and load. It is one of data integration tools used in the extraction of data from a source system, transformation of the extracted data into a format that can be easily analyzed and loading of the transformed data into another system usually referred to as a data warehouse. ETL is an alternative that is made up in a way that takes processing directly to the database leading to an improved performance.

The History of ETL

ETL was increasingly popularized in the 1970s when the use of databases or data repositories was appreciated by organizations to secure multiple business data and information. The need to improve the data that went across these databases quickly grew. This led to the use of ETL as the primary method of acquiring data from different sources, transforming it to easily analyzable data before it loading it to the required source.

Close to the late1980s moving on to the early 1990s, the use of data warehouses started being generally appreciated. As a unique type of database, data warehouse acted as a link for the access of data from different systems- minicomputers, personal computers, mainframe computers, and spreadsheets. ETL provided the option to choose from its different tools that analyzed different data warehouses. These include acquisitions and mergers that led many organizations to have different non-integrated ETL solutions.

Increasingly, there has been an intensification in the number of sources, data formats, and systems. This has led to the creation of several other methods data collection importation and processing used by organizations with the inclusion of extract, transform, and load. Both ELT and ETL are critical parts of the strategies used by organizations to integrate data.

Importance of ETL

Better business decisions have been made over the years with the use of the ETL process to get a adequately merged view of the data. Presently, the use of ETL in the integration of data from many sources and systems is still a useful constituent of an organizations data manipulation toolbox.

ETL is used in the movement and transformation of data obtained from multiple sources and loading it into various destinations, like flat files.

  • The use of ETL in with stored enterprise data provides extensive information about the history of a business.
  • ETL provides a consolidated view making it easier for users to analyze and report on the data to relevant authorities properly.
  • The use of ETL increases the productivity of professionals since codifies and reuses the data processes that are involved in movement without requiring technical know how to write scripts or code.
  • Progressively, ETL has continued to evolve in support of the emerging data trends like data streaming.
  • The use of both ELT and ETL by organizations to bring data together has continued to maintain accuracy while providing the auditing power need for analytics reporting and data warehousing.

The use of ETL in Today’s World

ETL uses streaming analytics to capture and analyze the fast-moving streaming data on the go. This has provided an opportunity to act fast based on whatever is happening then. Since ETL affords its users a historical view, it enables them to put data in context. In the process, the organizations are better placed to understand their businesses progressively easily. The two approaches to business organization need to work together.

The use of ETL

The core tools used by both ELT and ETL work side by side with other tools used for integration and with many other data management aspects such as data governance, metadata, data quality, and virtualization. Favorite uses of ETL today include:

Traditional Uses and ETL

ETL is an efficient method that has been proven and is relied on by many organizations daily such as health care providers who want to get accurate representations of the claims made or a retail chain owner who needs to see regular sales data. ETL has the power to combine and bring out transaction data from a data store or a data warehouse and manipulate it to a format that can easily be understood by business people. ETL is a tool that can be used to move data to modern systems from older systems with differentiated data formats. Most of the time, it is used to bring together data from businesses and to collect and merge data from partners and external suppliers.

The use of ETL with Big Data – Adapters and Transformations  

The organization that ends up with the majority data wins. While this is not automatically true, businesses gain a competitive edge when they have easy access to a large pool of data. Presently, all businesses require access to all pools of big data from social media, videos, the internet of things, spatial data, server logs, open or crowdsourced data, and many others. To support these emerging ETL requirements, vendors add improved and proper updates to their tools. The presence of adapters allows access to a variety of data source pools and the new data analysis tools to interact with them to efficiently extract and load data.

The Use of ETL for Hadoop and Others

The evolution of ETL has led it to support data integration across a variety of data sources more than the traditional data stores. The improved ETL tools can load and change both the unstructured and the structured data into Hadoop. These updated tools read then write different files at the same time from and to Hadoop leading to the simplification of the process of data merging to a collective transformation process. Some data solutions include information on prebuilt transformations for both the interaction and transaction data that run on Hadoop. ETL also enables data combination across operational data stores, master data management hubs, transactional systems, the cloud and BI platforms.

The Use of ETL with Self-Service Data Access

Own data preparation is a business trend that is growing very fast, and it puts the power of data access blending and data transformation in the hands of non-technical data professionals and other business users. Makeshift in nature, this natural process increases organizational speed in data management and relives IT from differentiating data in different formats for business users. This reduces the time used for preparing data thus allowing time for insight generation. Accordingly, both data and business professional can increase their productivity leading to an improved organization with better decisions.

The Use of ETL and the Data Quality

The use of ETL and other data manipulation software tools that are used for data profiling cleansing and auditing ensure that the data output is accurate and trustworthy. The ETL tools combine with data quality tools and the vendors combine such tools with ETL within their solutions such as those used for data lineage and mapping.

Oshara CEO Sidick

Find Out How My Team will "transform" your businesses through Reliable Application or Technology

Web development - We are a team of passionate web coders that will materialize your ideas in ways you could not even imagine.

API Integration - There is no secret using any API, connect all the tools you need, the way you need it.

IT And Cybersecurity Audit - Protect your customers, protect your business and protect yourself.

Maintenance & Support - We help organization to increase efficiency, improve performance, minimize downtime, and extend their lifespan.

Book a Call

The Use of ETL and Metadata

Metadata enables us to understand the origin and lineage of data and the impacts it can cause on other data pools in an organization. As data forms become more complex, it is essential to understand how the data elements have evolved how they are being used and how they are related. For example, if a Facebook name is added to a customer database, one needs to know what will be affected by such a prompt such as ETL applications jobs or reports.

How ETL Works

There is a relation between ETL and multiple other data manipulation processes, techniques, and functions. In order to have a more unobstructed view of how ETL works, one needs to understand how these other data manipulators work.


This the structured query language and it is commonly used to access and transform data within a database.

Business Rules, Transformations, and Adapters

After the extraction of data, ETL uses business rules to transform the data into new formats properly. This is done before the appropriately transformed data is loaded onto the target.

Data Mapping

The transformation process includes data mapping.  Data mapping provides detailed information to an application regarding how it can get the data it needs to manipulate. It also clearly matches the destination filed to its source field maps. For instance, the third feature of data reports from the activity of a website might be a username, the fourth might be the product that the user clicked to view and the fifth might be the time stamp obtained from the access. An ETL process or application should be able to map this information from the source which is the website data into a format that is required by the end destination. If the end destination was a that of a customer management system, it might keep the information on the username first and that of the time stamp as the fifth one; it might exclude information on the selected product. In such an instance, the manipulative effect of formatting the date to the required format might happen between the process of source data reading and target writing.


The use of ETL automates the set of instructions or the scripts that move on unseen to transform and move the data. Before the introduction of ETL, scripts were individually written in COBOL or C for specific system data transfer. This led to the creation of multiple databases that run different scripts — the ETL tools that were created at the beginning run on mainframes in a process as a set of groups. There was a later migration of ETL to PC and UNIX platforms. Presently, organizations still use both pre-programmed data movement methods and scripts.

ELT versus ETL

ETL was present in the beginning. Subsequently, ELT was added by many organizations as a complementary method. ELT works by extracting data from a source system and loads it to the end destination then it uses the power of the source system to process data and to conduct transformations. This fastens the process as it happens in the source.

The Quality of Data

Before the integration of data, the data is accumulated at a certain point where data is cleansed, standardized (NY and New York, Missis and Mrs., Sam and Samuel), duplicates are cleared out and addresses verified. Many solutions do not provide them as a whole, but the quality procedures can be run as part of the transformations.

Scheduling and Processing

ETL technologies and tools can provide real-time capabilities and batch scheduling. They have the power to process data at the database level or in the server at high amounts. Database based data processing prevents data duplication and avoids the need to use too much space on the platform as opposed to using a specialized engine.

Batch Processing

ETL has a batch window which is a time during which huge data volumes are moved between systems. During this period, the system blocks any changes on either the target or the source during the synchronization of data. Most financial institutions do these processes at night to summarize all daily transactions.

Web Services

These are internet-based methods of providing information to various applications in a quick way. This is a method that makes data manipulation simple, and it can give out more value faster.  For instance, a call center can obtain information about a customer by passing the phone number that returns complete information about the customer quickly. Having a richer knowledge of the customer information, a representative can easily make better decisions while interacting with the customer.

Master Data Management

This creates a single view of data obtained from different sources. It brings together both data manipulation capabilities and ETL to mix the data and create a perfect record.

Data Virtualization

This is a quick method of mixing data in order to create a non-physical view of data without removing it from its source. This defers from ETL since it does not create physical storage of results even though joining and mapping of data still occurs. This is because such a view is stored in memory and is cached in order to speed up access.

ETL and Event Stream Processing

With increasing data speeds, event stream processing can be used to monitor data streams and to make timely decisions based on the processed data streams. For instance, energy departments use predictive investigations on the data streams in order to detect when fuel pumps require service or repairs in order to reduce the size of damage and downtime.

If you need any help with your data management or data transfers incorporating ETL don't hesitate to contact our web agency. We run the best custom development web agency in Montreal.

Frequently Asked Questions

ETL stands for extract, transform, and load. It is one of the data integration tools used for extracting data from a source system, transforming the extracted data into an easily parsed format, and loading the transformed data into another system usually called a data warehouse.

Joe Shara

Joe Shara is a in-house journalist and Oshara editor. Tech savvy guy who follows all the latest web & digital developments. Loves cats and complex coding problems.

Was this article useful?

People Who Read This Article Also Read...

How to install a Laravel web application that you cloned from Git

Laravel is a powerful php framework that allows you to create custom web applications

How to install a Laravel web a...

Everything You Need To Know About Communication Agencies

By definition, a communication agency (marketing) is a company that plans and harmonizes internal and / or external communication on be...

Everything You Need To Know Ab...

12 questions to ask when collecting customer data

Collecting data from customers is an important marketing strategy since it gives you information on what customers exactly want instead...

12 questions to ask when colle...

How to fix Joomla Error 0 'Cannot open file for writing log while updating'?

Did you already try udpating your joomla website and you got this error : "An error has occurred. 0 Cannot open file for writing log" ...

How to fix Joomla Error 0 'Can...

How Netlinking Is Useful for Your SEO

With the aim of helping companies improve their notoriety through their blogs. Oshara Inc, shares his knowledge about Netlinking in thi...

How Netlinking Is Useful for Y...

How to obtain instagram certification?

Like Twitter and Facebook, Instagram offers the possibility for administrators of an Instagram page to certify certain pages. Oshara In...

How to obtain instagram certif...